La chronologie relative de la Basse Vallée du Nil jusqu’au 3e millénaire BC
(coord. E.C. Köhler)
Sommaire du n°21

5 Introduction
 par E. Christiana Köhler

Dossier : La chronologie relative de la Basse Vallée du Nil jusqu’au 3ᵉ millénaire BC (coord. E.C. Köhler)

15 The Palaeolithic and Epipalaeolithic of the Nile Valley and the deserts
 par E. Christiana Köhler

17 Neolithic in the Nile Valley (Fayum A, Merimde, el-Omari, Badarian)
 par E. Christiana Köhler

21 Some remarks on the chronology of the early Naqada Culture (Naqada I / Early Naqada II) in Upper Egypt
 par Rita Hartmann

33 Settlement Sites in the Nile Delta
 par Mariusz Jucha and Agnieszka Mączyńska

51 Chalcolithique final (ou Moyen ?), Nagada IIC-D/IIIA
 par Nathalie Buchez

65 Naqada IIIA-B, A Crucial Phase in the Relative Chronology of the Naqada Culture
 par Stan Hendrickx

81 The Relative Chronology of Nubia
 par Maria Carmela Gatto

101 Naqada IIIC-D – The end of the Naqada Culture?
 par E. Christiana Köhler, Jane Smythe & Amber Hood

111 Conclusion
 par Béatrix Midant-Reynes
Études et essais

115 A Missing Chapter of *The Desert Fayum*: Fayum lithic artefact collection in the Allard Pierson Museum, Amsterdam
par Noriyuki Shirai

147 Bibliography of the Prehistory and the Early Dynastic Period of Egypt and Northern Sudan. 2011 Addition
par Stan Hendrickx & Wouter Claes

Lectures

par Yann Tristant

par Yann Tristant

169 Appel à contribution
The Palaeolithic and Epipalaeolithic periods in Egyptian are probably the most difficult phases to define in terms of relative chronology, which is why this section will be only very brief. There are at least five partly interrelated problems that cause these difficulties. Firstly, the periods span hundreds of thousands of years of early human activity in the Nile Valley and the adjacent deserts, starting with the production of stone tools around half a million years ago and creating an almost impractically long time span to define.

Secondly, considering the great antiquity of these activities, there have also been substantial global climatic and local environmental changes during these phases that dramatically shaped the appearance of the valley and the deserts. These represent significant natural transformation processes that affected the diagenesis of archaeological sites. For example, there were phases of great aridity that forced early humans to move closer to water sources in or near the valley, followed by very wet phases that caused flash floods and water-borne erosion along the Nile terraces and in the wadis. Further, due to the consistent deposition of fluvial sediments in the Nile valley, be it through lateral erosion or inundation, some of the most ancient sites may have been buried by thick deposits of clays or gravel on the valley floor and may yet be found.

Thirdly, although there are large numbers of Palaeolithic stone artefacts, they tend to be widely scattered over isolated and remote sites, as the producers of these stone tools were small and highly mobile groups of hunters and gatherers that moved with the seasonal migration of animals and from one water source to the next. The systematic and broad exploration of Palaeolithic sites is therefore not without difficulty.

Fourthly, because Palaeolithic humans were very mobile, there is no significant evidence for structural remains, such as habitation sites or graves, let alone stratigraphic deposits, until the final stages of the Palaeolithic, therefore evidence remains scarce until the early Neolithic.

1. I am grateful to Philip Van Peer for providing helpful advice on this chapter.
And fifthly, because Palaeolithic and Epipalaeolithic humans did not produce ceramics, which always represent a most important and reliable backbone of any relative chronology, artefact sequences almost entirely rely on lithics and as such cannot be tested against other artefact groups. Apart from observing very general assemblage characteristics of those lithic industries that only allow for very broad sequences, it is therefore most challenging to identify connections between them, establish direct sequences from one to the other or even precise typologies of individual artefact groups. In order to try to develop such sequences or to determine what is early and what may be later, archaeologists working with this material are, as a result, highly reliant on modern scientific dating methods and absolute chronology. Much of this work is on-going. However, very broad and general phases can be distinguished whose definition largely rests on European prehistoric terminology. The earliest lithic industries derive from the Lower Palaeolithic Acheulean tradition (c. 500,000 B.P.) in the Egyptian Western Desert and in the Sudanese part of the Nile Valley. They are largely characterized by bifacial hand axes that, because they seem to be perfectly suited for a variety of uses, have a very long duration. While other core reduction (blade or flake) industries are known from early on, it appears as if flakes of the Levallois technique become more popular during the Middle Palaeolithic (from around 250,000 B.P.). There is some evidence for gradual change from around 60,000 B.P., which eventually leads to lithic technologies of Upper Palaeolithic appearance, although sites are extremely limited until around 25,000 B.P. The Late Palaeolithic (c. 24,000-10,000 B.P.) provides the first evidence for microlithic industries, which probably lay the foundations for the Epipalaeolithic (c. 10,000-6,000 B.C.E.) tool repertoire, although there is no direct link between them. The latter also increasingly employs the blade technique, but it is possible that external influences from the Western Desert and the Levant may have contributed. The first evidence of structural remains comes from the Upper (c. 70,000 - 25,000 B.P.) and Late Palaeolithic sites such as Nazlet Khater and Wadi Kubbaniya (Vermeersch 1983; Wendorf & Schild 1986), but there is little stratigraphic evidence allowing for more precise sequences.

Bibliography
